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1.  Key Teammembers 

A large number of individuals contributed to the development of the algorithms, methods, and 

implementation of the L1b approach for EMIT.  The primary contributors are the following: 

¶ David R. Thompson (Jet Propulsion Laboratory) ï EMIT Co-I, Instrument Scientist 

¶ Robert O. Green (Jet Propulsion Laboratory) ï Mission PI, Radiometric modeling  

¶ Tom Painter (Jet Propulsion Laboratory) ï Surface reflectance and BRDF 

¶ Olga Kalashnikova (Jet Propulsion Laboratory) ï Atmospheric Aersols  

¶ Sarah Lundeen (Jet Propulsion Laboratory) ï Science Data System Lead 

¶ Randy Pollock (Jet Propulsion Laboratory) ï Instrument Systems Engineer 

¶ Philip Brodrick (Jet Propulsion Laboratory) ï Algorithms Design and Implementation 

In addition, the algorithms described are based on prior work that includes sponsorship by multiple 

research agencies and includes contributions by many individuals.  These are associated with the 

papers and manuscripts listed throughout this text, and provided in references under the relevant 

topics. 
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2. Historical Context and Background on the EMIT Mission and its 
Instrumentation 

Mineral dust radiative forcing is the single largest uncertainty in aerosol direct radiative forcing 

(USGCRP and IPCC). Mineral dust is a principal contributor to direct radiative forcing over arid 

regions, impacting agriculture, precipitation, and desert encroachment around the globe. However, 

we have poor understanding of this effect due to uncertainties in the dust composition. Dust radiative 

forcing is highly dependent on its mineral-specific absorption properties, and the current range of 

iron oxide abundance in dust source models (0 ï 7 wt%) translates into a 460% uncertainty in 

regional radiative forcing predicted by Earth System Models (ESMs). Meanwhile, soil samples from 

North Africa regions - important sources of mineral dust - contain up to 30 wt% iron oxide. The 

National Aeronautics and Space Administration (NASA) recently selected the Earth Mineral Dust 

Source Investigation (EMIT) to close this knowledge gap. EMIT will launch an instrument to the 

International Space Station (ISS) to directly measure and map the mineral composition of critical 

dust-forming regions worldwide. 

The EMIT Mission will use imaging spectroscopy across the visible shortwave (VSWIR) range to 

reveal distinctive mineral signatures, enabling rigorous mineral detection, quantification, and 

mapping. The overall investigation aims to achieve two objectives. 

1. Constrain the sign and magnitude of dust-related RF at regional and global scales. EMIT 

achieves this objective by acquiring, validating and delivering updates of surface mineralogy 

used to initialize ESMs. 

2. Predict the increase or decrease of available dust sources under future climate scenarios. 

EMIT achieves this objective by initializing ESM forecast models with the mineralogy of 

soils exposed within at-risk lands bordering arid dust source regions. 

The EMIT instrument is a Dyson imaging spectrometer that will resolve the distinct absorption 

features of iron oxides, clays, sulfates, carbonates, and other dust-forming minerals with contiguous 

spectroscopic measurements in the visible to short wavelength infrared region of the spectrum. 

EMIT will map mineralogy with a spatial sampling to detect minerals at the one hectare scale and 

coarser, ensuring accurate characterization the mineralogy at the grid scale required by  ESMs. 

EMITôs fine spatial sampling will resolves the soil exposed within hectare-scale agricultural plots 

and open lands of bordering arid regions, critical to understanding feedbacks caused by mineral dust 

arising from future changes in land use, land cover, precipitation, and regional climate forcing.  

Data Product Description Initial  Availability  Median Latency 

Post-delivery 

NASA 

DAAC  

Level 0  Raw collected telemetry  4 months after IOC   2 months  LP DAAC 

Level 1a  Reconstructed, depacketized, 

uncompressed data, time referenced, 

annotated with ancillary information 

reassembled into scenes.  

4 months after IOC  2 months  LP DAAC  

Level 1b  Level 1a data processed to sensor units 

including geolocation and observation 

geometry information  

4 months after IOC  2 months  LP DAAC  

Level 2a  

  

Surface reflectance derived by 

screening clouds and correction for 

atmospheric effects.  

8 months after IOC   2 months  LP DAAC  

Level 2b  Mineralogy derived from fitting 

reflectance spectra, screening for non-

mineralogical components.   

8 months after IOC  2 months  LP DAAC  
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Level 3  Gridded map of mineral composition 

aggregated from level 2b with 

uncertainties and quality flags  

11 months after IOC  2 months  LP DAAC  

Level 4  Earth System Model runs to address 

science objectives  

16 months after IOC  2 months  LP DAAC 

Table 1: EMIT  Data Product Hierarchy 

The EMIT Project is part of the Earth Venture-Instrument (EV-I) Program directed by the Program 

Director of the NASA Earth Science Division (ESD). EMIT is comprised of a Visible/Shortwave 

Infrared Dyson imaging spectrometer adapted for installation on the International Space Station 

(ISS). It will be installed on Flight Releasable Attachment Mechanism (FRAM) of an ExPRESS 

Logistics Carrier (ELC) on the ISS, in a site formally designated ELC 1 FRAM 8.  NASA has 

assigned management of the Project to the Jet Propulsion Laboratory of the California Institute of 

Technology. The EMIT Payload is scheduled to be installed on the ELC 1 FRAM 8 in 2021. Table 

1 above describes the different data products to which the EMIT Mission will provide to data 

archives.  This document describes the ñLevel 2Aò stage. 

 

Figure 1: Representative spectra from the EMIT analysis, data product levels 0, 1b, and 2a. 

 
Figure 2. High-level workflow of the EMIT science data system. 

 

This document describes the theoretical basis for the algorithm producing EMITôs ñLevel 2aò 

product.  Figure 1 shows examples of the spectrally-defined quantities leading up to this analysis, 

drawn from an airborne precursor analogue instrument.  Figure 2 is a diagram of the Science Data 

System workflow, including all analysis stages and dependencies. The system begins with a ñLevel 

0ò raw data product that records the raw sensor output in digital numbers.  The EMIT Science Data 

System (SDS) applies spectral and radiometric calibration to produce ñLevel 1ò products, e.g. 

calibrated radiance measurements at the sensor.  These are then geolocalized to produce an image 

that aligns with specific geographic coodinates for matching against digital elevation models. The 

ñLevel 2Aò inverts these radiance measurements.  It uses physically-motivated surface/atmosphere 

models to estimate atmospheric properties and surface reflectance.  The ñLevel 2Aò products include 

atmospheric parameters and other ancillary files, but the primary output is the surface reflectance 

Level 0: Raw instrument data Level 1b: Calibrated spectral radiance at sensor Level 2a: Estimated surface reflectance (HRDF)
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estimate used for later analysis by mineral detection and mapping algorithms.  The mineral detection 

stage (not shown) performs feature fitting on the reflectance data to estimate mineral occurrence, 

creating a ñLevel 2Bò map at native instrument resolution.  This is aggregated into a coarse ñLevel 

3ò product for incorporation into Earth System modeling to evaluate Radiative Forcing (RF) impacts.  

All stages are instantiated in the EMIT science product generation software operating at the Jet 

Propulsion Laboratory, California Institute of Technology.    

3  Algorithm rationale and prior validation 

Atmospheric correction (Thompson et al., 2019) has a multi-decadal history of use for imaging 

spectrometers viewing the Earth surface.  This on airborne precursor instruments such as NASAôs 

ñClassicò Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C, Green et al., 1998) and has 

been extended to its next generation counterpart (AVIRIS-NG, Thompson et al., 2017). Such 

analyses have been conducted in dozens of campaigns over decades of successful operations.  Many 

empirical methods based on scene averaging (Kruse 1988), flat fielding (Roberts et al., 1986), 

QUAC (Bernstein et al., 2005), and cloud shadow methods (Reinersman et al., 1998) are useful but 

do not scale to global observations with diverse scene content and sparse field data. ).  They rely 

either on manual intervention, or on specific characteristics of the scene such as a spatially 

homogeneous atmosphere or known scene content, precluding their use with EMIT.  Instead, we 

favor a physically-motivated correction based on radiative transfer models. These have the dual 

advantages of superior generalizability across scenes without the need for manual intervention in the 

analysis, and physical interpretability.   

Recent reviews surveying different atmospheric alternatives appear in Thompson et al. (2019), 

Ientilucci and Adler-Golden (2019), and for aquatic spectra, Frouin et al. (2019).   Broadly speaking, 

physically-based methods themselves fall into two general categories (Frouin et al., 2019). 

Sequential methods first estimate atmospheric properties based on analysis of the radiance spectrum, 

and then invert the radiance directly via closed-form algebra to estimate the surface reflectance.  In 

other words, atmosphere and surface are estimated in two independent steps.  Existing physics-based 

atmospheric correction codes designed for imaging spectrometers all use this general method.  They 

include ACORN (Kruse et al., 2004), ATCOR (Richter and Shlaepferm 2002), ATREM (Gao, 1993) 

and the AVIRIS-NG standard approach derived from ATREM (Thompson et al., 2015). 

Alternatively, simultaneous methods estimate surface and atmosphere simultaneously, as in 

Bayesian Maximum A Posteriori estimation (Thompson et al., 2018, 2019b).  Simultaneous methods 

carry several advantages that are crucial for the EMIT mission.  First, they enable rigorous 

uncertainty accounting.  Uncertainty accounting on the input side means respecting instrument noise 

in the radiance data which can vary by surface type, observing conditions, and wavelength, as well 

as incorporating any prior background knowledge available in the form of statistical priors.  The 

ability to seamlessly account for these factors makes the Bayesian inversion a flexible and powerful 

approach to achieve EMITôs extreme sensitivity requirements.  On the output side, uncertainty 

accounting lets the algorithm propagate posterior uncertainty estimates downstream, where they can 

improve the performance of mineral fitting algorithms (Thompson et al., 2020b).  A second 

independent benefit of the simultaneous model inversion approach is the demonstrated ability to use 

the entire spectral range of acquisition in the atmospheric correction, enabling estimation of subtler 

broad atmospheric perturbations such as aerosols (an EMIT product, in the form of an AOD mask). 

The main disadvantage is that the methods use an iterative algorithm, leading to higher 

computational demands.   

The EMIT mission uses a Bayesian model inversion strategy, a formalism known colloquially in the 

community as Optimal Estimation (OE, e.g. Rodgers 2000), with careful application of geospatial 

interpolation to glean the benefits of both while minimizing cost.  The specific OE-based approach 

used in EMIT has been validated by decades of operational use by NASAôs atmospheric remote 
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sounding spectrometers on many missions and millions of acquisitions (Rodgers 2000).  The 

approach recently has been extended to VSWIR imaging spectrometers and validated though peer-

reviewed field studies with over 20 in situ validation trials of surface reflectance over synthetic, 

water, vegetated, and bare terrain (Thompson et al., 2018, Thompson et al., 2019b, Thompson et al., 

2019c, Thompson et al., 2020).  Outside the imaging spectroscopy community, the OE approach has 

been In situ measurement protocols have also been vetted by decades of continuing operational use 

(Thompson et al., 2015).  The code used is distributed as open source through the public repository 

at https://github.com/isofit/isofit/.  This transparency helps for finding errors, and also for end users 

who desire details on the implementation specifics (e.g. data layout in memory, command flow, 

etc.).  The code will undergo continuing development by a growing community of users throughout 

the EMIT mission. 

4.  Algorithm description 

  4.1 Input data 

The EMIT input and output data products delivered to the DAAC use their formatting conventions, 

the system operates internally on data products stored as binary data cubes with detatched human-

readable ASCII header files.  The precise formatting convention adheres to the ENVI standard, 

accessible (Jan 2020) at https://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html.  The 

header files all consist of data fields in equals-sign-separated pairs, and describe the layout of the 

file.  The specific input files needed for the L2b stage are: 

I. An observation metadata file, typically with the string ñobsò in the filename, containing 

information about the observation geometry for every pixel.  The observation file uses the 

original instrument frame (non-orthorectified) coordinate system with size [rows x cols x 

12] in Band-Interleaved by Line (BIL) format and single-precision IEEE little-endian 

floating point representation.  It should overlay the radiance data exactly so that all of the 

pixels are associated between the two files.  The channels contain: 

1. Path length ï the direct geometric distance from the sensor to the location on the 

surface of the Earth, as defined by a Digital elevation model  

2. To-sensor azimuth, in decimal degrees, at the surface  

3. To-sensor zenith, in decimal degrees, at the surface 

4. To-sun azimuth, in decimal degrees, at the surface 

5.  To-sun zenith, in decimal degrees, at the surface,  

6. Phase angle in degrees, representing the angular difference between incident and 

observation rays  

7. Terrain slope in degrees as determined from DEMs, 

8. Terrain aspect in degrees, as determined from DEMs, 

9. The cosine of the solar incidence angle relative to the surface normal 

10. UTC time 

II.  A location file, typically with the string ñlocò in the filename, containing information about 

the geographic projection of each spectrum.  The location file is left in the original non-

orthorectified instrument coordinate system, with size [rows x cols x 3] in Band-Interleaved 

by Line (BIL) format and single-precision IEEE little-endian floating point representation.  

It should overlay the radiance data exactly.  The channels contain: 

1. Latitude of surface, in decimal degrees, with a WGS-84 datum 

2. Longitude of surface, in decimal degrees, in degrees East of zero, with a WGS-84 

datum 

3. The average elevation of the surface, as determined from a Digital Elevation Model 

III.  A geographic lookup table file, typically with the string ñgltò in the filename, containing 

information about the index into the unorthorectified data of each spectrum.  It is projected 

to a geographic coordinate system, with size [rows x cols x 2] in Band-Interleaved by Line 

https://github.com/isofit/isofit/
https://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html
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(BIL) format and 32-bit unsigned integer representation.  Its columns contain the row and 

column indices, respectively,  of each spectrum in the original unorthorectified data.   

IV.  Radiance data at sensor, typically with the string ñrdnò in the filename, in units of uW 

/cm2/ nm / sr  The data is in the instrument frame (non-orthorectified representation with 

size [rows x cols x channels] in Band-Interleaved by Line (BIL) format and single-

precision IEEE little-endian floating point representation.  The precise number of channels 

is not yet determined at the time of this writing but should be a value close to 300.   

 

ñBad dataò at the periphery outside the field of view, or masked as a result of cloud masking or 

instrument error, is typically assigned the reserved (floating point) value -9999.  In addition to 

these files above, which change on a per acquisition basis, the L2A stage uses a wide range of 

ancillary files in its configuration.  These include configuration files themselves, climatology 

and physical reference data, surface, atmospheric, and instrument model data, and more.  These 

ancillary files are outside the scope of this ATBD, where we will concern ourselves with the 

data associated with a particular product and acquisition.  We will also disregard internal 

configurations used by the science data system for managing and running these processes.  

Table 2 Below enumerates all products. 

 

Input file  Format Interpretation  

Observation 

Metadata 

rows x columns x 12, BIL 

interleave 32-bit floating point 

with detached ASCII header 

Varies (see text) 

Location 

File 

rows x columns x 3, BIL 

interleave 32-bit floating point 

with detached ASCII header 

Latitude in decimal degrees, 

Longitude in decimal degrees, 

elevation of surface in meters 

Geographic 

Lookup 

Table 

rows x columns x 2, BIL 

interleave 32-bit unsigned 

integer, detached ASCII header 

Row and column index into 

unorthorectified instrument data 

Radiance 

data 

rows x columns x channels, BIL 

interleave 32-bit floating point 

with detached ASCII header 

Radiance at sensor in uW /cm2/ 

nm / sr . 

Table 2: Input files 

4.2 Theoretical description 

Broadly speaking, the EMIT atmospheric correction stage has several goals.  All operations involve 

the atmosphere to some extent, and operate on the calibrated radiance files, so we combine them for 

organizational convenience into a single product level.  The Level 2a output includes: 

¶ Estimates of local aerosol and atmospheric water vapor content of the atmosphere along 

with the Lambertian-equivalent surface reflectance, all with uncertainty predictions. 

¶ Flags for high-haze conditions (i.e. aerosol optical depths exceeding our working range). 

¶ Mask for cloudy regions of the scene which lets downstream analyses to exclude them. 

Figure 3 below illustrates the sequence of operations along with the major input and output 

products at each stage.  All procedures execute sequentially moving from top to bottom.  Boxes are 

colored according to their designation as level 1B, level 2A, or intermediate products.  Since cloud 

masking is a separate operation with minimal dependencies or algorithmic relationship to the 

surface atmosphere estimation, we treat it separately in a later section. 
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Figure 3: Sequence of 

operations in the EMIT 

level 2A stage.  All 

reflectance and atmosphere 

estimates  also include 

uncertainty predictions.   

 

 

4.2.1 Radiative Transfer and Atmospheric Modeling 

Physics-based retrieval of atmospheric parameters and surface reflectance typically relies on 

mathematical models expressing the spectral radiance reflected by the Earthôs surface and 

atmosphere at the top-of-atmosphere (TOA) as a sum of radiative terms from different processes, 

such as the photons scattered by the atmosphere into the sensor line of sight or those multiply 

scattered between the atmosphere and the surface (Figure 2).  While in general the atmospheric 

effects are dependent on non-Lambertian properties of surface-atmosphere coupling, the EMIT 

analyses permit several simplifications.  The mineral absorption fits used in later stages are relatively 

invariant to spectrally-featureless magnitude differences resulting from non-Lambertian behavior.  

Additionally, surfaces in arid mineral dust forming regions are mostly Lambertian at that 

instrumentôs ground sampling, unlike ï for example ï dense tree canopies or open ocean.  Finally, 

imaging geometry is near to nadir.  These circumstances mean that we can report Lambertian-

equivalent properties in the general case without significant loss of accuracy to downstream 

algorithms. This permits the following decomposition (Thompson et al., 2018):  

(1) 

where boldface denotes vector-valued quantities (in this case, spectra) and circles represent element-

wise multiplication. The symbol ”  refers to the top-of-atmosphere reflectance; it is based on the 

radiance measurement L M, the extra-terrestrial solar flux F and the solar zenith angle —. The symbol 

T is the direct and diffuse transmission of the mean optical path from sun to ground to sensor, S is 

the spectral albedo representing the atmospheric reflectance as seen from the surface, ” is the path 

reflectance of the atmosphere, and ” is the Lambertian-equivalent surface reflectance.   

These terms are related to several physical properties in the atmosphere.  Of special interest are the 

scattering and absorption by molecular gases and aerosols (Figure 4), which all contribute to each 

of the terms in equation 1.  An example of the transmittance contribution from gas absorption appears 

in Figure 5 below, adapted from (Thompson et al., 2019).  We calculate the EMIT atmospheric 

absorption and scattering property estimates using the MODTRAN 6.0 Radiative Transfer Model 

(Berk et al., 2016; 2016b).  Given a specific atmospheric state, MODTRAN can estimate the optical 

coefficients S, T, and of Equation 1 from physical first principles.  We perform this estimation at 

high spectral resolution, transform the result to the EMIT instrument spectral response. 
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Figure 4: The atmospheric correction process involves jointly 

estimating the parameters of a model that includes the surface 

reflectance, the atmospheric constituents, and the instrument.  A 

wide range of different physical effects, including scattering, 

absorption, and the target surface reflectance signal, all play a role in 

determining the photon distribution at the sensor. 

 

Figure 5: Atmospheric gas 

absorption by wavelength across 

the EMIT spectral interval. 

 

The MODTRAN 6.0 atmospheric gas absorption model uses a ñcorrelated kò approach with 

absorption coefficients from the HITRAN 2012 line list (Rothman et al., 2012).  Following on prior 

work, we augment the basic configuration with three basic aerosol signatures (Thompson et al., 

2019b) representing small, medium, and large particles such as soot, sulfates, and dust. The soot and 

sulfate-derived signatures are spherical, while dust particles are nonspherical.  All three are 

described by spectral absorption, extinction, and asymmetry profiles in prior work (See Figure 6, 

adapted from Thompson et al., 2019c).  The complete aerosol is a contribution of all three aerosol 

optical depths, each specified independently (typically at the reference wavelength 550 nm). These 

three signatures are used structured error terms in the inversion process to improve atmospheric 

correction.  This also permits an aggregate AOD estimate for scene flagging.  In Figure 6, type A is 

a strongly absorbing aerosol signature derived from soot.  Type B is a   separate signature based on 

continental dust absorption and scattering coefficients. Type C is a small scattering particle based 

on a sulfate signature.  We advise against interpreting the individual retrieved as physical  properties 

of the particles. 

 

Figure 6: Aerosol profiles (image and approach 

adapted from Thompson et al., 2019c).  We use 

three signatures as structured error terms in the 

inversion process to improve atmospheric 

correction and to permit an aggregate AOD 

estimate for scene flagging.  Type A is a strongly 

absorbing aerosol signature derived from soot.  

Type B is a   separate signature based on 

continental dust absorption and scattering 

coefficients. Type C is a small scattering particle 

based on a sulfate signature.  While the inversion 

process estimates the AOD of each signature 

independently, we advise against interpreting the 

individual retrieved as physical  properties of the 

particles due to uncertainties in vertical 

distribution and ambiguity in optical properties. 
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4.2.2 Model Inversion 

Our retrieval algorithm is based on Bayesian Maximum A Posteriori (MAP) inversion of equation 

1, using a strategy known colloquially as Optimal Estimation (OE, Rodgers, 2000).  This approach 

has been demonstrated previously in multiple imaging spectrometer field studies (Thompson et al., 

2018, 2019b, 2019c).  Its advantages include rigorous uncertainty propagation and the ability to 

estimate atmospheric aerosol constituents in high AOD conditions.  The main disadvantage is a high 

computational cost due to the iterative inversion algorithm, which must run independently on every 

spectrum.  Here, we address this by running the full algorithm on a representative subset of several 

thousand spectra per scene.  These results enable a highly accurate, spatially-local empirical line 

estimate for the remainder, allowing millions of spectra to be corrected and capturing the benefits of 

the iterative approach at a feasible computational cost.  

The Bayesian Model inversion acts as a local ascent of the posterior probability density for a state 

vector x consisting of surface and atmosphere parameters (Figure 7).  As in Thompson et al. (2018) 

we initialize the result to a heuristic estimate  using a band ratio across water vapor absorption 

features, and an algebraic inversion of equation (1). Then, an iterative gradient-based Levenberg 

Marquardt follows the (negative) derivative of the following cost function until converging to a local 

minimum: 

(2) 

The first term is related to the logarithm of the multivariate data likelihood at the current state vector; 

the second term penalizes departures from the prior in similar fashion.  All probability distributions 

are multivariate Gaussians.  Here ɰ  is the observation noise that incorporates measurement noise 

in the radiance measurement ● as well as any unknowns in the surface atmosphere system that are 

treated here as random variables.  The forward model ╕●  maps the reflectance and atmosphere 

state vector, ●, to the measurement space using Lookup table interpolation of optical coefficients 

in Equation 1.  The multivariate Gaussian prior over surface and atmosphere is defined by 

Covariance matrix and mean ‘. These priors are intentionally set to be extremely broad in order 

to avoid estimation bias in atmospheric parameters.  Similarly, we use a very loose and heavily 

regularized surface prior.  It is based on a collection of multivariate Gaussians, as suggested in 

Thompson et al., (2018, 2019a, 2019b), using the Euclidean-nearest component of the initial state 

calculated in reflectance space as the prior. All spectra are L2-normalized for the purposes of 

calculating these distances and prior distributions so that the distribution affects the shape but not 

the magnitude of spectra. The only difference with the formulation in these previous studies is that 

all wavelengths outside critical atmospheric windows are left entirely decorrelated.  This allows 

instrument noise to enter the reflectance estimate unmodified, and permits highly accurate retrieval 

of absorption features in mineral bands.  

Upon convergence, the linearization of the forward model produces an estimate of the posterior 

probability density.  For K r representing Jacobian matrices of partial derivatives, i.e. the 

instantaneous change in the state vector from a change in the calibrated radiance, the posterior 

covariance takes the form: 
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This yields a reflectance, atmosphere, and uncertainty estimate for each reference spectrum.   The 

final step is an Empirical Line operation (Thompson et al., 2016) that uses the k nearest solutions 

to extrapolate an exact solution for the high-resolution data. 

 

 

Figure 7: The Bayesian model 

inversion begins at an initial guess, 

and climbs the local gradient of the 

posterior probability density 

(equivalently, minimizing the cost 

function in equation 2).  At the time 

of convergence, this produces a 

linearized estimate of posterior 

uncertainty, portrayed here as an 

ellipsoid. 

.   

Figure 8: (Left) Cuprite, NV 

scene. (Right) Interpolated 

OE estimation of a single 

reflectance spectrum, via the 

local empirical line solution.  

Sharp, spectrally-diagnostic  

Kaolinite features are visible 

in the 2-2.5 micron range.   

   

 

4.2.3 Superpixel Segmentation 

Since complete model inversion of every spectrum is computationally intractable, we use a 

segmentation to identify representative spectra in the flightline where we apply our model 

inversions.  After performing the atmosphere/surface estimation on the representative subset of, we 

assign the atmospheric estimates to each location associated with that segment.  We then use the 

representative spectra to calculate local ñEmpirical lineò solutions (Moran et al., 2001, Thompson 

et al., 2016).  The empirical line performs the exact atmospheric correction for all independent (non-

aggregated) spectra at maximum spatial resolution.   

The initial segmentation uses a superpixel aggregation approach based on the SLIC algorithm 

(Achanta et al., 2012).  We reduce all spectra in the file to a basis of five orthogonal dimensions with 

principal components analysis, and segment the result into regions that are (a) contiguous and (b) 

contain several hundred pixels of similar radiance properties.  Figure 9 illustrates the superpixel 

segmentation of a scene from NASAôs Next Generation Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS-NG).  It results in a reduced subset of locally-representative radiances and 

associated regions.  This dataset is typically 2-3 orders of magnitude faster to analyze.  Additionally, 

it significantly reduces noise variance to assist with accurate atmosphere estimation.  Similarly, we 

take the mean radiance and location of each segment as the input to the following atmospheric 

correction. 

(
|

)
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Figure 9: SLIC 
segmentation combines 
contiguous pixels of 
similar radiance 
properties into a single 
local reference area and 
associated radiance 
spectrum.  

 

4.2.4 Empirical Line extrapolation 

The empirical line (Moran et al., 2001) first identifies the nearest 15 representative spectra for the 

current segment.  Optionally, one can weight vertical distance on the DEM differently from 

horizontal distance.  It then calculates an independent linear least-squares regression solution for 

every wavelength, finding the offset and coefficient that maps radiance onto reflectance for that 

specific atmospheric condition.  Coefficients are calculated once per segment and cached for 

application to the fine-scale spectra within. Because the empirical line estimate is spatially localized 

the linear solution for each wavelength respects local variability of the atmosphere while providing 

both AOD and H2O estimates over the entire scene.  It accurately identifies signatures that appear 

in small single- or sub-pixel locations that are not apparent in the spatially-aggregated estimate.  

Figure 10 shows an example of the empirical line prediction for the Cuprite, NV scene at 550 nm, 

showing that the representative superpixelsô radiances and reflectances do indeed exhibit a locally-

linear relationship.  This permits a highly accurate estimate for the fine-scale spectrum shown in red.  

Figure 10: Empirical line estimate for an 

example segment of the Cuprite flightline 

portrayed in Figure 6.  Black points show 

the mean spectra of the 15 nearest 

reference spectra to a fine-scale radiance 

we aim to invert.  Since the relationship is 

locally linear, it is easy to quickly 

determine an accurate solution via linear 

regression. 

 

 

4.2.5 Cloud Masking 

The radiance data analysis begins with a cloud masking operation following on the prior work of 

Thompson et al (2014).  This procedure places prior distributions on the distributions of top of 

atmosphere reflectances at three representative wavelengths: 420 nm, 1250 nm, and 1650 nm.  The 

distributions of intensities over clouds and Earthôs surface are well-separated, permitting a single 

trivariate threshold to flag clouds.   

Nearest 
neighbor 
solutions

Reflectance 
prediction for the 
query  radiance
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Figure 11: Thresholds in three channels 

combine to define a hypercubic ñexcluded 

region.ò  Any pixel exceeding the threshold in 

all three channels is considered cloudy.  

Any pixel exceeding the threshold in all three channels is flagged as cloudy, and the result written 

to a binary cloud mask for use in later analysis.  The thresholds define an exclusion region ד (Figure 

11) that defines the boundary between cloud and clear locations.  Consequently, for a top of 

atmosphere reflectance spectrum y the decision rule f(y) classifying the pixel as either cloudy, 

written c1 , or clear, written c2,  is simply: 

   

The Bayesian formalism of Thompson et al (2014) allows the designer to set a threshold on all three 

channels that optimally balances the risk of data loss from false positives against the risk of passing 

cloud pixels into subsequent analysis.  For the EMIT mission, most surfaces of interest are far darker 

than clouds, so we set a conservative threshold during cloud masking.  The expected loss is a function 

of the prior class probabilities (taken here as uninformed or uniform), the probability density of a 

given observation for cloudy classes, for a given state variable x representing the local surface ñtypeò 

and season.  For simplicity we ignore this last variable, leading to a uniform decision rule applying 

equally to all different surfaces.  The expected loss for a relative weighting of false positive and false 

negative errors, respectively written ‌  and ‌ , is: 

 

A false positive weighting of 10-1000 is a conservative threshold that is very unlikely to exclude 

bright surface spectra.  Figure 12 below shows that bare terrain is much darker than typical cloud 

spectra, particularly in the ultraviolet and blue channels.  Water is uniformly dark.  Snow or ice can 

be bright in the visible channels, but exhibits high absorption in the near and shortwave infrared 

which permits any thresholding method of two or more channels to separate them effectively.  The 

panel at right shows the bivariate exclusion regions for two representative false positive weight 

values, illustrating that the two are sufficient to discriminate snow and terrain from cloud pixels in 

a diverse historical dataset. Figure 13 below, taken from Thompson et al. (2014), shows an example 

application of this approach to a scene from NASAôs ñClassicò Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS-C).  The left panel shows the original scene in red, green, and blue optical 

wavelengths.  The scene contains both bright snow and dispersed clouds.  The middle panel shows 

the result of the cloud masking operation using the channelwise threshold.  We note that an onboard 

cloud masking operation performs a similar operation, excising the most obvious clouds to reduce 

data volumes.  This operation uses an even more conservative threshold, and excises entire vertical 

segments of a scene with too many cloud pixels.   

We dilate the detected cloud masks in order to avoid cast shadows and disruption of the incident 

light field adjacent to clouds.  Figure 14 shows a graphical illustration of the method.  The maximum 

cloud height and solar zenith angle define a geographic exclusion area around each cloud where 

shadows may be found.  We apply an efficient image-space distance transformation to the cloud 

mask, producing an array specifying every image locationsô distance to the nearest cloud pixel.  We 

flag any pixel whose distance lies within the exclusion interval.  The maximum cloud height is 3000 
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m, which is low enough to preserve data but high enough to capture the majority of optically-thick 

cumulus clouds.  Higher altitude stratus clouds are less important for this purpose because they are 

more likely to be large, spatially-continuous cloud masses. Such clouds subtend a large enough 

fraction of the image to be filtered by the onboard cloud masking system.  Additionally, their 

altitudes are high enough that they would require an infeasibly large exclusion region.  This cloud 

height may be reassessed during the mission. 

  

Figure 12: Cloud screening illustration, from Thompson et al. (2014).  Left: Brightness distributions 

for cloud, bare terrain, and snow have very different spectral shapes. Right: Two of three threshold 

channels showing ñexclusion regionsò defined by different tolerances for false positives.  

Figure 13: L2A cloud screening compared to onboard 

(real-time) excision, adapted from Thompson et al 

(2013).  The right panel shows an acquisition by 

NASAôs ñClassicò Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS-C).  We show visible channels 

of scene content including bare dark terrain, bright 

snow-covered terrain, and cloud.  The middle panel 

shows the L2A pixel-wise cloud masking.  The onboard 

excision performs a pre-screening using an even more 

conservative threshold to reduce transmitted data 

volume; this excises vertical segments of each scene that 

contain more than an acceptable number of cloud pixels.  

 

Figure 14: The cloud mask dilation excludes pixels that are 

likely to contain contamination by cloud diffuse illumination or 

cloud cast shadows.   We excise pixels in a conservative 

exclusion region defined by the solar zenith and a maximum 

cloud height parameter. 

4.3 Practical Considerations 

Due to the computationally-demanding nature of the EMIT L2A stage, operators must attend to the 

balance between accuracy and speed in their settings for approximations like the lookup table grid 

Dilation

Avoids shadow and 

diffuse light effects

Max. 

cloud 

height
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spacing (which affects the number of MODTRAN runs) and the number of superpixels (which 

affects the accuracy of empirical line extrapolation).  Currently, a three- or four-point Aerosol 

AOD model is used, with linear interpolation between.  The H2O model uses a 0.2 g/cm2 spacing.  

As computational resources permit, these numbers will be relaxed.  As of the writing of this 

document, a typical airborne flightline requires 1-2 days to complete for a single CPU; given a 

cluster with many CPUs, keeping up with the EMIT datastream is feasible.  However, we 

anticipate further accuracy improvements as additional CPUs come online. 

5. Output Data 

The EMIT output data products delivered to the DAAC use their formatting conventions, the 

system operates internally on data products stored as binary data cubes with detatched human-

readable ASCII header files.  The precise formatting convention adheres to the ENVI standard, 

accessible (Jan 2020) at https://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html.  The 

header files all consist of data fields in equals-sign-separated pairs, and describe the layout of the 

file.  The specific output files from the L2b stage are: 

I. A surface reflectance file, typically with the string ñrflò in the filename, containing the 

estimated spectral surface reflectance for every pixel.  It is provided in the non-

orthorectified instrument coordinate system with size [rows x cols x channels] in Band-

Interleaved by Line (BIL) format and single-precision IEEE little-endian floating point 

representation.  It should overlay the orthorectified radiance data exactly so that all of the 

pixels are associated between the two files.   

II.  A reflectance uncertainty file, typically with the string ñuncertò in the filename, 

containing predicted uncertainty in the reflectance measurement for each channel, in units 

of standard deviations (presuming a Gaussian distribution).  Covariance is ignored.  It is 

provide in the non-orthorectified instrument coordinate system with size [rows x cols x 

channels] in Band-Interleaved by Line (BIL) format and single-precision IEEE little-endian 

floating point representation.  It should overlay the reflectance and radiance data exactly. 

III.  A mask file, typically with the string ñmaskò in the filename, containing channels with the 

following information: 

1. Probability this pixel is cloud 

2. Probability this pixel is standing water  

3. Dilated cloud mask 

4. Aerosol Optical Depth (550 nm) 

5. Estimated Columnar Water Vapor (g cm-2) 

6. Aggregate bad data flag 

The fourth channel applies EMITôs masking rules to the otherchannels in order to 

determine whether that pixel will be used in subsequent aggregation to the Level 3 product.  

The file is projected into a geographic coordinate system with size [rows x cols x channels] 

in Band-Interleaved by Line (BIL) format and single-precision IEEE little-endian floating 

point representation.  It should overlay the reflectance and radiance data exactly. 

 

Any file can contain ñbad dataò as a result of cloud masking or instrument error. These pixels are 

typically assigned the reserved (floating point) value -9999.  Table 2 Below enumerates all 

products. 

 

Output  file Format Interpretation  

Reflectance rows x columns x channels, BIL interleave 32-

bit floating point with detached ASCII header 

Lambertian-equivalent 

surface reflectance 

Uncertainty rows x columns x channels, BIL interleave 32-

bit floating point with detached ASCII header 

Reflectance uncertainty 

(one standard deviation) 

https://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html
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Mask rows x columns x 5, BIL interleave 32-bit 

unsigned integer, detached ASCII header 

Varies by channel (see 

above). 

Table 3: Output files 

6. Calibration, Validation, and Field Measurement 

Level 2 reflectances will be validated using standard field protocols used in prior field studies 

(Thompson et al., 2018, 2019a, 2019b, 2020a).  We will measure surface reflectance of a large 

uniform bright surface, such as a playa, using field spectroradiometers, with coincident in-situ 

AEROSOL optical depth estimation by sun extinction measurements from the ground, during the 

EMIT overflight.  Instrument measurement and spatial variability, combined with uncertainties in 

the atmospheric model and retrieval, can demonstrate closed uncertainty budgets as in Thompson 

et al. (2020a) or simply good agreement between the estimate and reality, as in Thompson et al. 

(2018).  Figure 15 below shows examples of a calibration/validation experiment at Stonewall 

Playa, Ivanpah, with the spectroradiometer field unit (left panel), the playa itself (center panel), 

and the comparison of reflectances (right panel). Our calibration and validation plan includes 

several locations that we will use opportunistically in response to ISS overpasses. 

 

    
 

Figure 15: Left: Field spectroradiometer for validation. Center: Stonewall Playa validation site.  

Nimrod Carmon demonstrating. Right: Remote and in-situ retrievals with 15„ uncertainty 

predictions (Thompson et al., 2020). 

 

Prior verification and validation for the Level 2 algorithm takes several approaches.  The codebase 

is available as open source (ISOFIT, 2019) and has a growing community of users in the research 

community.  The method draws from decades of atmospheric sounding research (Rogers 2000) 

and its specific application to imaging spectroscopy has been vetted for multiple instruments and 

campaigns across continents, compared with in situ data and published in peer reviewed literature.  

Publications referencing the results of this code on airborne precursor data include work by 

Thompson et al. (2018, 2019b, 2019c), Frouin et al. (2019), and Bue et al. (2019).  Field trials 

demonstrate good alignment with in-situ reflectance data, and residuals consistent with posterior 

error predictions. Figure 16 shows one example from Ivanpah Playa, conducted in 2018.   
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Figure 16: In situ validation of reflectance estimation algorithm. 

(Above) In situ and remote measurements align to within posterior 

error predictions. Adapted from Thompson et al. (2018).  (Right) Field 

validation at Ivanpah Playa, from Thompson et al (2019). 

 

 

AOD estimates show good alignment with spatiotemporally-proximal MODIS retrievals over 

difficult hazy conditions, and with in-situ estimates by handheld sunphotometers (Figure 17). 

 

Figure 17: (Left) MODIS 

AOD550 estimates align 

with remote airborne 

retrievals acquired on the 

same day within a 

latitude/longitude degree. 

(Right) Airborne retrievals 

align with in-situ 

sunphotometry. Both images 

are from Thompson et al. 

(2019c).   

 

For the EMIT mission we performed a separate sensitivity study to determine the degree to which 

aerosol type mismatch during atmospheric correction could impact surface mineralogy estimates.  

Specifically, we examine a mismatch between the template aerosol profiles in the EMIT 

surface/atmosphere retrieval process and the ñtrueò optical properties of aerosols in the atmosphere. 

It is likely that the optical properties in the retrieval and atmosphere never match exactly; templates 

are intended as generic flavors of distortion that the inversion can mix in proportions to achieve good 

quality inversions.  It is reasonable to ask whether an unforeseen optical type, not captured by the 

combinations of palette options, could induce an erroneous residual shape in the surface reflectance.  

Most damaging would be an absorbing aerosol that bears its own minerals inducing some 

hallucinatory mineral-like change in the surface reflectance.  Such situations would not be common 

in practice, though mineral absorption profiles are occasionally visible in dust plumes imaged 

historically by spectrometers under extreme conditions (Chudnovsky et al., 2009).    

 

Our experiment uses an atmosphere based on the iron-oxide-bearing dust mineral profile in the CAM 

earth system model.  This is a strongly absorbing aerosol with shapes distinctly different from the 

profile palette in our inversion.  Notably, the shapes of optical absorptions by atmospheric dust also 

differ significantly from the surface minerals.  They are also somewhat muted in their airborne dust 

form due to embedding within larger particles. As a consequence, we hypothesize that a band depth 

estimate of hematite absorption surface signatures should not be significantly affected by any surface 

reflectance error from this mismatch.  To test this, we simulate a stressing case in which the 

instrument observes a hematite absorption feature, with and without an additional perturbation at 

2% relative band depth.  This level of sensitivity is the detection limit targeted by EMIT.   Our 
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